The
Function of Masonry
in
Modern Architectural Structures
by
R. Guastavino, Architect
Part II.
CONTENTS

<table>
<thead>
<tr>
<th>SECTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-10 Introduction to Second Book on the Function of Masonry</td>
<td></td>
</tr>
<tr>
<td>11 Elements of Construction</td>
<td></td>
</tr>
<tr>
<td>12 Material Function of Masonry</td>
<td></td>
</tr>
<tr>
<td>13 Classes of Constructive Materials</td>
<td></td>
</tr>
<tr>
<td>14 Earth and Stone</td>
<td></td>
</tr>
<tr>
<td>15 Wood and Metals</td>
<td></td>
</tr>
<tr>
<td>16 Metals</td>
<td></td>
</tr>
<tr>
<td>17 Variety in Materials</td>
<td></td>
</tr>
<tr>
<td>18 Earth and Wood</td>
<td></td>
</tr>
<tr>
<td>19 Stone Masonry</td>
<td></td>
</tr>
<tr>
<td>20 Use of Metals in Architecture</td>
<td></td>
</tr>
<tr>
<td>21 Iron</td>
<td></td>
</tr>
<tr>
<td>22 Masonry vs. Iron</td>
<td></td>
</tr>
<tr>
<td>23 Not all Masonry is Fire-resisting</td>
<td></td>
</tr>
<tr>
<td>24 Effects of Fire on Materials</td>
<td></td>
</tr>
<tr>
<td>25 Masonry Materials (with footnote)</td>
<td></td>
</tr>
<tr>
<td>26 Divisions in Masonry</td>
<td></td>
</tr>
<tr>
<td>27 Adobe</td>
<td></td>
</tr>
<tr>
<td>28 Brick</td>
<td></td>
</tr>
<tr>
<td>29 Composition of Bricks</td>
<td></td>
</tr>
<tr>
<td>30 Suitable Clays for Floors and Ceilings</td>
<td></td>
</tr>
<tr>
<td>31 Amount of Heat required in burning Brick</td>
<td></td>
</tr>
<tr>
<td>32 Unsuitable Bricks</td>
<td></td>
</tr>
<tr>
<td>33 Bricks that soften under Fire</td>
<td></td>
</tr>
<tr>
<td>34 Fire-resisting Bricks</td>
<td></td>
</tr>
<tr>
<td>35 Joints in Brick Masonry</td>
<td></td>
</tr>
<tr>
<td>36 Status of Stone Masonry</td>
<td></td>
</tr>
<tr>
<td>37-39 Classes of Stone Construction</td>
<td></td>
</tr>
<tr>
<td>40 Concrete</td>
<td></td>
</tr>
<tr>
<td>41 Composition of Concrete (with footnote)</td>
<td></td>
</tr>
<tr>
<td>42 Application of Concrete</td>
<td></td>
</tr>
<tr>
<td>43 Masonry in Modern Construction</td>
<td></td>
</tr>
<tr>
<td>44 Masonry of the First Order, or "Ignia- hydraulic"</td>
<td></td>
</tr>
<tr>
<td>45 Masonry of the Second Order, or "Hydraulic"</td>
<td></td>
</tr>
</tbody>
</table>
CONTENTS

SECTION

46 Masonry of the Third Order, or "Ignia Non-hydraulic."
47 Materials for Masonry of the First Order.
48 Materials for Masonry of the Second Order.
49 Materials for Masonry of the Third Order.
50 Masonry for Fire-proof Buildings.
51 Material for Open Buildings.
52 Material for Closed Buildings.
53 Necessity for Masonry of the First Order.
54 Why destroyed if not Masonry of the First Order.
55 Effect of Conflagrations on Iron.
56 Precautions necessary against Conflagrations.
57 Materials for Floors and Ceilings.
58 Proper form for Floor, Ceiling and Roof.
59 Expansion and Contraction in Masonry.

SECTION

60 Remarks about the Use of Concrete and Iron for Staircases.
61 All Materials expand or contract.
62 Effects of Temperature on Materials.
63 Effects of Temperature on Spanning Constructions.
64 Extent of Expansion by Heat in Tile Arches.
65 Proper Size for Transverse Section of Arch.
66 Advantage of arched form and thin materials therefor.
67 Moment of the Section.
68 Function of Mortar.
69 Monoliths.
70 What Mortar does.
71 The best Mortar.
72 Primary Elements of Mortar.
73-75 Portland-cement Mortars.
76 Cohesive Construction.
77 Limitations of Portland Cement (with footnote).
78 Portland-cement Mortars should be protected.
SECTION

79 Conditions that Sand and Stone give to the Mortar.
80 First Experiment.
81 Destruction of Mortar by Fire (with footnote).
82 Effect of Fire on Mortar.
83 Why Mortar is affected by Fire.
84 Second Experiment.
85 Experiment with proper Proportions of Water.
86 Experiment with improper Proportions of Water.
87 Consequence of improper Proportions of Water.
88 Constant care necessary in mixing Cement.
89 Porous Mortar.
90 Third Experiment.
91 Favorable Conditions of Burnt Clay for Monoliths.
92 Explanation of a "Perfect Bond."
93 The Tile or Brick protects Crystallization.
94 Protection of Cement from Fire.
95-96 Mortar and Concretes for spanning.

SECTION

97-98 Two Systems of Cohesive Construction.
99-105 Concrete Construction in Roman Era (with footnote).
106-112 Pantheon essentially a Brick Construction (with footnote).
113-116 Concrete Construction for large Spans.
117-120 Desirability of using Brick or Tile instead of Broken Stone.
121-132 Field for Burnt Clay Material, Monolithics self-supporting during Construction.
133 Marble and Granite as decorative Materials.
134 Aim of the present Building Laws.
135 Definition of Modern Masonry (with footnote).
136 No Material inalterable.
137-140 Conception and Function of the Skeleton.
141 Double Function of Iron.
142 The suggestive Name, "Skeleton."
143 Past Attempts to truss Masonry.
CONTENTS

SECTION

144-147 Classes of Iron Frames and Trussing Masonry.
148-151 Deviation from the rational Conception of the Skeleton (with footnote).
152 Amount of Iron in the First Instance.
153 Amount of Iron in the Second Instance.
154-155 Amount of Iron in the Third Instance.
156 Aesthetic function of masonry.
157-158 Greek Art.
159 Moorish Art.
160 Greek Architecture an artistic Invention.
161-163 Contemporaneous Architecture has not the simple Mission that the Greek art had.
164 Lessons from Moorish Art.
165 The "New Art."
166 New Art not a Plagiarism.

SECTION

167 Rational Architectural Classicism.
168 Beginning of a new architectural Era.
169 Only three Typical Styles ever invented.
170 First Typical Style.
171 Roman Art was a constructional Invention.
172-173 Centuries required to develop Roman construction.
174 Second Typical Style.
175 Moorish Style.
176-178 Renaissance and intermediary Styles.
179 Third Typical Style.
180-182 Preponderance of noble Masonry as metaphysic regulator.
183 What Architectcs must realize.
184-185 Education required by modern Workmen.
186 Warning to Academies of Architecture.

VI