Journal Article
Contributions of Local Farming to Urban Sustainability in the Northeast United States

Food consumption is an important contributor to a city’s environmental impacts (carbon emissions, land occupation, water use, etc.) Urban farming (UF) has been advocated as a means to increase urban sustainability by reducing food-related transport and tapping into local resources. Taking Boston as an illustrative Northeast U.S. city, we developed a novel method to estimate sub-urban, food-borne carbon and land footprints using multiregion-input-output modeling and nutritional surveys. Computer simulations utilizing primary data explored UF’s ability to reduce these footprints using select farming technologies, building on previous city-scale UF assessments which have hitherto been dependent on proxy data for UF. We found that UF generated meagre food-related carbon footprint reductions (1.1–2.9% of baseline 2211 kg CO2equivalents/capita/annum) and land occupation increases (<1% of baseline 9000 m2 land occupation/capita/annum) under optimal production scenarios, informing future evidence-based urban design and policy crafting in the region. Notwithstanding UF’s marginal environmental gains, UF could help Boston meet national nutritional guidelines for vegetable intake, generate an estimated $160 million U.S. in revenue to growers and act as a pedagogical and community building tool, though these benefits would hinge on large-scale UF proliferation, likely undergirded by environmental remediation of marginal lands in the city.

Title
Publication TypeJournal Article
Year of Publication2017
AuthorsFernandez J, Goldstein BP, Hauschild MZ, Birkved M
JournalEnvironmental Science & Technology
Volume51
Issue13
Start Page7340
Date Published06/2017
Abstract

Food consumption is an important contributor to a city’s environmental impacts (carbon emissions, land occupation, water use, etc.) Urban farming (UF) has been advocated as a means to increase urban sustainability by reducing food-related transport and tapping into local resources. Taking Boston as an illustrative Northeast U.S. city, we developed a novel method to estimate sub-urban, food-borne carbon and land footprints using multiregion-input-output modeling and nutritional surveys. Computer simulations utilizing primary data explored UF’s ability to reduce these footprints using select farming technologies, building on previous city-scale UF assessments which have hitherto been dependent on proxy data for UF. We found that UF generated meagre food-related carbon footprint reductions (1.1–2.9% of baseline 2211 kg CO2equivalents/capita/annum) and land occupation increases (<1% of baseline 9000 m2 land occupation/capita/annum) under optimal production scenarios, informing future evidence-based urban design and policy crafting in the region. Notwithstanding UF’s marginal environmental gains, UF could help Boston meet national nutritional guidelines for vegetable intake, generate an estimated $160 million U.S. in revenue to growers and act as a pedagogical and community building tool, though these benefits would hinge on large-scale UF proliferation, likely undergirded by environmental remediation of marginal lands in the city.