13:03:20. Maria adores Barcelona, and she has arranged with some friends to go visit next May.

13:03:26. François has a meeting in Madrid next week, and since he is travelling from Canada, he will step over in Barcelona for a couple of days.

13:03:32. Mayuko and Wakaru travel to Europe for they honey moon. They will spend four days in Barcelona.

13:03:44. Vladimir and Irina enjoy cruises. Their next one is on the Mediterranean. They all cue together at Sagrada Familia. 3,25 million visitors a year: every 6 seconds there is a new visitor entering the temple. And they all need to get there, cue, become stunned, take pictures, discover an incredible unknown secret spot, and buy souvenirs.

With Sagrada Familia as main icon, students will discuss how tourism modifies the city, and how the city needs to be modified to accommodate tourism. The studio will address interventions in the vicinity of Gaudi’s temple to build up the necessary infrastructures to absorb such fluxes of people; architecture and public space working together to build up coherent and scaled spaces that are able to maintain urbanity and the city identity.

The studio will be structured in 3 different and correlative phases: analysis of the site, urban proposal and architectural proposal.

Analysis of the site

Students are invited to understand the dynamics of the residents as well as that of tourists. This analysis should take the student to position himself in a very specific reading of the site, which will further drive his urban proposal.

Topics to be overseen: pedestrian circulation, public transportation, views to Sagrada Familia, use and possible use of public space, temporal activities in the area year round to be hosted in or near Sagrada Familia, etc.

Students will first develop a coherent and abstract diagrammatic conclusion of their analysis. They will also work on a conceptual plan of the area, with the data of the previous analysis laid over the specificity of the site.
Urban Proposal

According to the previous analysis, students should propose a urban design strategy for the overall defined site. This proposal should already attempt to define the intensity and location of the tourist hub.

Students should discuss in this proposal the following topics: general vehicular transit, pubic vehicular (cars and motorbikes) parking, bar terraces, vegetation, topography, visual attractions/distractions, possible alternative uses of the public space, … but also, sun and shadow, views, hierarchy of the spaces, sequences of experience throughout the parcours.

Architectural Proposal

Students will need to provide a specific architectural solution for:

**Tourist bus parking (20 buses min)
**Public Restrooms (10 M + 10 W + Service Area)
**Tourist information Desk (500 sq ft.)
**Ticket booth (500 sq ft.)
**Bicycle Rent space (1500 sq ft.)
**Bicing + Tourist Bus Stop
**Public Space for residents
**Public space for tourists

Students will work on an architectural proposal that can work both with the previous urban layout, and with a detailed approach on specific uses, tectonics and definition of spaces.
<table>
<thead>
<tr>
<th>Schedule</th>
<th>Week</th>
<th>Dates</th>
<th>Days</th>
<th>Event Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 1</td>
<td>1-5</td>
<td>Feb</td>
<td>Tue, Thr</td>
<td>Getting to know the topic. General Research</td>
</tr>
<tr>
<td>Week 2</td>
<td>8-12</td>
<td>Feb</td>
<td>--</td>
<td>Urban Analysis. Conceptual Thursday 11, 2pm. — Pin Up with Lorena Bello</td>
</tr>
<tr>
<td>Week 3</td>
<td>15-18</td>
<td>Feb</td>
<td>--</td>
<td>Urban Analysis. On the site Tuesday 16 – proposals to be sent by pdf to TA, to hand in to instructor Thursday 18 – skype with instructor</td>
</tr>
<tr>
<td>Week 4</td>
<td>22-26</td>
<td>Feb</td>
<td>Thu, Fri</td>
<td>Thursday — Presentation for Urban Analysis Friday _ Kickoff class for Urban strategies</td>
</tr>
<tr>
<td>Week 5</td>
<td>29Feb-4Mar</td>
<td>Tue, Thr</td>
<td>First attempt of urban design Thursday _ Pin up for Urban strategies.</td>
<td></td>
</tr>
<tr>
<td>Week 6</td>
<td>7-11</td>
<td>Mar</td>
<td>--</td>
<td>Urban design defined Thursday 10, 2pm — Pin Up with Lorena Bello.</td>
</tr>
<tr>
<td>Week 7</td>
<td>14-18</td>
<td>Mar</td>
<td>--</td>
<td>Urban design on specific architectural site Monday 14, by 6pm — proposals to be sent by pdf to TA, to hand in to instructor Tuesday 15 – skype with instructor</td>
</tr>
<tr>
<td>Week 8</td>
<td>21-25</td>
<td>Mar</td>
<td>Mo, Tu, Wed</td>
<td>SPRING BREAK</td>
</tr>
<tr>
<td>Week 9</td>
<td>28Mar-1Apr</td>
<td>Tue, Thr</td>
<td>final desk crits --Tuesday MID TERM -- Thursday</td>
<td></td>
</tr>
<tr>
<td>Week 10</td>
<td>4-8</td>
<td>Apr</td>
<td>Tue, Thr</td>
<td>Architectural strategy</td>
</tr>
<tr>
<td>Week 11</td>
<td>11-15</td>
<td>Apr</td>
<td>--</td>
<td>Architectural volume definition</td>
</tr>
<tr>
<td>Week 12</td>
<td>18-22</td>
<td>Apr</td>
<td>Tue, Thr</td>
<td>Tue—pin up Arch definition Switching scales.</td>
</tr>
<tr>
<td>Week 13</td>
<td>25-29</td>
<td>Apr</td>
<td>--</td>
<td>Working coherently on all scales</td>
</tr>
<tr>
<td>Week 14</td>
<td>2-6</td>
<td>May</td>
<td>Thr</td>
<td>Desk crits</td>
</tr>
<tr>
<td>Week 15</td>
<td>9-12</td>
<td>May</td>
<td>Tue, Thr</td>
<td>FINALS</td>
</tr>
</tbody>
</table>
Bibliography

 You can find a catalan pdf at: http://www.anycerda.org/web/arxiu-cerda/fitxa/cherda-i-la-barcelona-del-futur/343

- **Barcelona, transformació: plans i projectes** (catalan-english edition available), Oriol Clos, ed.
 Ajuntament Barcelona 2008

- **Barcelona Pam a Pam**, Alexandre Cirici, ed. Comanegra 2012

- **Architecture and tourism : perception, performance and place**, edited by D. Medina Lasansky and Brian McLaren, Bloomsbury Academic, 2004

List of Subject Objectives

Students will improve their ability to research, conceptualize, develop, and represent a project, starting from the urban scale and following up to define the architectural scale.

Evaluation Criteria

Students will be evaluated according to the following standards:

- **Class participation.** Although Studio classes might seem to focus on development of individual projects, it is mandatory to engage in communal discussions, as they are part of the curricula of the course.

- **Assignments and deadlines** are set up to be completed in time. It is required that every student meets the defined standards for them, and is able to defend them publicly.

- **Attendance** to all classes is mandatory. You are allowed three excused absences for the semester. An excused absence is defined as one that was discussed with and approved by the professor at least 24 hours prior to the date of absence, or a family or medical emergency that is confirmed by your physician or a dean in Student Support Services. Absences beyond the three allotted will result in a decrease in your final grade. If you miss six or more classes, you will be asked to drop the subject or receive a failing grade.

- **Studio Criteria.**
 - Concept: how clearly are you articulating your design intentions? How able you have been to synthesize and clarify them?
 - Process: how well are you using your concept to develop a spatial and architectural response to the given program or site? How able have you been to identify the main topics of your initial proposal and structure them hierarchically?
 - Final Project:
 - Did you synthesize your concept into a resolved architecture appropriate for the site and larger spatio-temporal context?
 - Is your architectural response a logical conclusion of your process?
 - Does your design address the needs called out in the given program?
 - Representation:
 - Quality of representation? Evidence of skill/craft?
 - Ability of representation to convey information?
 - Clarity of representation?

Final Studio Deliverables

Studio assignments and deliverables will be handed to TA for archiving. Detailed requirements and instructions for deliverables for reviews will be specified two weeks prior to deadline. Such list of documents will be delivered by instructor or TA, and sent to students. This list might not be necessarily show the same documents for all projects.
Grading Definition

The grades that will be given respond to the following criteria:

A Exceptionally good performance demonstrating a superior understanding of the subject matter, a foundation of extensive knowledge, and a skilful use of concepts and/or materials.

B Good performance demonstrating capacity to use the appropriate concepts, a good understanding of the subject matter, and an ability to handle the problems and materials encountered in the subject.

C Adequate performance demonstrating an adequate understanding of the subject matter, an ability to handle relatively simple problems, and adequate preparation for moving on to more advanced work in the field.

D Minimally acceptable performance demonstrating at least partial familiarity with the subject matter and some capacity to deal with relatively simple problems, but also demonstrating deficiencies serious enough to make it inadvisable to proceed further in the field without additional work.

F Failed. This grade also signifies that the student must repeat the subject to receive credit.

Academic Integrity + Honesty

MIT’s Academic Integrity policy reads, in part: “MIT anticipates that you will pursue your studies with purpose and integrity. The cornerstone of scholarship in all academic disciplines is honesty. MIT expects that you will approach everything you do here honestly – whether solving a math problem, writing a research or critical paper, or writing an exam” (see complete policy at integrity.mit.edu).

In this course, I will hold you to the high standard of academic integrity expected of all students at the Institute. I do this for two reasons. First, it is essential to the learning process that you are the one doing the work. I have structured the assignments in this course to enable you to gain a mastery of the course material. Failing to do the work yourself will result in a lesser understanding of the content, and therefore a less meaningful education for you. Second, it is important that there be a level playing field for all students in this course and at the Institute so that the rigor and integrity of the Institute’s educational program is maintained. If society is to view a degree from MIT as meaningful, we must ensure that the work done toward the degrees awarded is honest.

Violating the Academic Integrity policy in any way (e.g., plagiarism, unauthorized collaboration, cheating, etc.) will result in official Institute sanction. Possible sanctions include receiving a failing grade on the assignment or exam, being assigned a failing grade in the course, having a formal notation of disciplinary action placed on your MIT record, suspension from the Institute, and expulsion from the Institute for very serious cases. Please review the Academic Integrity policy and related resources (e.g., working under pressure; how to paraphrase, summarize, and quote; etc.) and contact me if you have any questions about appropriate citation methods, the degree of collaboration that is permitted, or anything else related to the Academic Integrity of this course.

MIT’s expectations and policies regarding academic integrity should be read carefully and adhered to diligently: http://integrity.mit.edu
Student Performance Criteria: NAAB

Required by NAAB and organized by “realms” to better understand the relationships between individual criteria. (The “NAAB Student Performance — Educational Realms & Student Performance Criteria” document is available on the Faculty Handbook website.)

Realm A: Critical Thinking and Representation

- A1. Communication Skills: Ability to read, write, speak and listen effectively
- A2. Design Thinking Skills: Ability to raise clear and precise questions, use abstract ideas to interpret information, consider diverse points of view, reach well-reasoned conclusions, and test alternative outcomes against relevant criteria and standards.
- A3. Visual Communication Skills: Ability to use appropriate representational media, such as traditional graphic and digital technology skills, to convey essential formal elements at each stage of the programming and design process.
- A4. Technical Documentation: Ability to make technically clear drawings, write outline specifications, and prepare models illustrating and identifying the assembly of materials, systems, and components appropriate for a building design.
- A5. Investigative Skills: Ability to gather, assess, record, apply, and comparatively evaluate relevant information within architectural coursework and design processes.
- A6. Fundamental Design Skills: Ability to effectively use basic architectural and environmental principles in design.
- A7. Use of Precedents: Ability to examine and comprehend the fundamental principles present in relevant precedents and to make choices regarding the incorporation of such principles into architecture and urban design projects.
- A8. Ordering Systems Skills: Understanding of the fundamentals of both natural and formal ordering systems and the capacity of each to inform two- and three-dimensional design.
- A9. Historical Traditions and Global Culture: Understanding of parallel and divergent canons and traditions of architecture, landscape and urban design including examples of indigenous, vernacular, local, regional, national settings from the Eastern, Western, Northern, and Southern hemispheres in terms of their climatic, ecological, technological, socioeconomic, public health, and cultural factors.
- A10. Cultural Diversity: Understanding of the diverse needs, values, behavioral norms, physical abilities, and social and spatial patterns that characterize different cultures and individuals and the implication of this diversity on the societal roles and responsibilities of architects.

Realm B: Integrated Building Practices, Technical Skills and Knowledge:

- B1. Pre-Design: Ability to prepare a comprehensive program for an architectural project, such as preparing an assessment of client and user needs, an inventory of space and equipment requirements, an analysis of site conditions (including existing buildings), a review of the relevant laws and standards and assessment of their implications for the project, and a definition of site selection and design assessment criteria.
- B2. Accessibility: Ability to design sites, facilities, and systems to provide independent and integrated use by individuals with physical (including mobility), sensory, and cognitive disabilities.
- B3. Sustainability: Ability to design projects that optimize, conserve, or reuse natural and built resources, provide healthful environments for occupants/users, and reduce the environmental impacts of building construction and maintenance.
operations on future generations through means such as carbon-neutral design, bioclimatic design, and energy efficiency.

- **B4. Site Design**: Ability to respond to site characteristics such as soil, topography, vegetation, and watershed in the development of a project design.

- **B5. Life Safety**: Ability to apply the basic principles of life-safety systems with an emphasis on egress.

- **B6. Comprehensive Design**: Ability to produce a comprehensive architectural project that demonstrates each student’s capacity to make design decisions across scales while integrating the following SPC:
 - A.2. Design Thinking Skills
 - A.4. Technical Documentation
 - A.5. Investigative Skills
 - A.8. Ordering Systems
 - A.9. Historical Traditions and Global Culture
 - B.2. Accessibility
 - B.3. Sustainability
 - B.4. Site Design
 - B.5. Life Safety
 - B.8. Environmental Systems
 - B.9. Structural Systems

- **B7. Financial Considerations**: Understanding of the fundamentals of building costs, such as acquisition costs, project financing and funding, financial feasibility, operational costs, and construction estimating with an emphasis on life-cycle cost accounting.

- **B8. Environmental Systems**: Understanding the principles of environmental systems’ design such as embodied energy, active and passive heating and cooling, indoor air quality, solar orientation, daylighting and artificial illumination, and acoustics; including the use of appropriate performance assessment tools.

- **B9. Structural Systems**: Understanding of the basic principles of structural behavior in withstanding gravity and lateral forces and the evolution, range, and appropriate application of contemporary structural systems.

- **B10. Building Envelope Systems**: Understanding of the basic principles involved in the appropriate application of building envelope systems and associated assemblies relative to fundamental performance, aesthetics, moisture transfer, durability, and energy and material resources.

- **B11. Building Service Systems**: Understanding of the basic principles and appropriate application and performance of building service systems such as plumbing, electrical, vertical transportation, security, and fire protection systems.

- **B12. Building Materials and Assemblies**: Understanding of the basic principles utilized in the appropriate selection of construction materials, products, components, and assemblies, based on their inherent characteristics and performance, including their environmental impact and reuse

Realm C: Leadership and Practice

- **C1. Collaboration**: Ability to work in collaboration with others and in multidisciplinary teams to successfully complete design projects.

- **C2. Human Behavior**: Understanding of the relationship between human behavior, the natural environment and the design of the built environment.

- **C3. Client Role in Architecture**: Understanding of the responsibility of the architect to elicit, understand, and reconcile the needs of the client, owner, user groups, and the public and community domains.
• C4. Project Management: Understanding of the methods for competing for commissions, selecting consultants and assembling teams, and recommending project delivery methods.

• C5. Practice Management: Understanding of the basic principles of architectural practice management such as financial management and business planning, time management, risk management, mediation and arbitration, and recognizing trends that affect practice.

• C6. Leadership: Understanding of the techniques and skills architects use to work collaboratively in the building design and construction process and on environmental, social, and aesthetic issues in their communities.

• C7. Legal Responsibilities: Understanding of the architect’s responsibility to the public and the client as determined by registration law, building codes and regulations, professional service contracts, zoning and subdivision ordinances, environmental regulation, and historic preservation and accessibility laws.

• C8. Ethics and Professional Judgment: Understanding of the ethical issues involved in the formation of professional judgment regarding social, political and cultural issues in architectural design and practice.

• C9. Community and Social Responsibility: Understanding of the architect’s responsibility to work in the public interest, to respect historic resources, and to improve the quality of life for local and global neighbors.