The Sesen-Aten Temple was inspired by Guastavino’s thin unreinforced masonry vaults, and Eladio Dieste’s doubly-curved concrete shell structures. Our design explores the ability of unreinforced masonry forms to perform passive thermoregulation in a desert climate.

Passive Thermoregulation with Unreinforced Masonry

Dome Sizing
- **Standard Load Case**
 - Dead Load + 30 psf live load
 - Clay Tiles: 125 pcf - 20%
 - Stabilized Earth: 100 pcf - 70%
 - Cement + Fly Ash: 135 pcf - 10%
- **Asymmetrical Load Case**
 - Dead load with only 50% of roof under 30 psf live load.

Oculus Sizing
- 10' effective depth created through feathering of structural fins.

Passive Thermoregulation

Solar Chimney

The masonry fins act as a solar chimney by absorbing solar radiation and heating the air around them, creating a convective updraft.

Daylighting

A central oculus, 20 feet in diameter, allows direct sunlight and precipitation into the building. Some light enters through the solar chimney.

Ground-Exchange Air Intake

This flow of hot air draws air up and out of the building, flushing it constantly. Air passes underground to cool before it enters the building.

Wall Cross-Section Detail: Thermal Mass

The walls of the dome are 24” thick near the base, providing sufficient thermal mass and thermal resistance to reduce temperature fluctuations between day and night.

Tributary Area:

- **Location:** Cairo, Egypt
- **Program:** Non-denominational spiritual space

27 lbs CO₂ / sq. ft

- **Diameter:** 160'
- **Height at apex:** 60'
- **Average wall thickness:** 20'
- **Total Square footage:** 20k sq ft
- **Maximum Force:** 42 kips
- **Design stress:** 1000 psi
- **Live load:** 30 psf
- **Total self-weight:** 3300 lbs
- **Total clay tiles:** 2600 lbs
- **Total stabilized earth:** 2000 lbs