3. Two Utopias of Georgii Krutikov’s ‘The City of the Future’

Alla Vronskaya

After a series of scheduled public defences of architecture graduates in May 1928 in the VKhUTEIN (Higher Art and Technical Institute) in Moscow, only one was still pending as the author kept asking for more time to finish his project, the notorious futuristic fantasy of a city suspended above the earth, ‘The City of the Future (The Evolution of Architectural Principles of City-Planning and the Organisation of Dwelling)’. The defence finally occurred in June. It took place in the Psychotechnical Laboratory organised within the institute by a professor of architecture, Nikolai Ladovskii – an entirely black room designed for psychological experiments with human perception. As the eyewitnesses later recalled, an uncanny silence filled the room. The chair of the defence committee suggested posing questions, but nobody was willing to speak. At last, the representative of the City Infrastructure Department broke the silence: ‘How much time did you spend preparing the project, what is it based on, and how does it deal with the questions of sewer and water-supply?’ The author, Georgii Krutikov, stoutly responded that it took him fifteen years to think about the problems that are solved in the project, and that the forthcoming progress of science and technology would definitely allow solving the latter problem. There were no other questions or commentaries. Relieved, the dean of the Architecture Department hastened to proclaim Krutikov an ‘architect-artist’.

The scandal exploded later, when the newspaper Postrojka [Edifice] published a scoffing review entitled ‘Soviet Jules-Vernes. VKhUTEIN Trains Dreamers instead of Builders; The Project of the Construction of a “Flying City”’, in which it accused Krutikov of fruitless fantasising and losing touch with reality (Levochskii 1928). This quick, biased assessment of Soviet propagandist Levochskii seems to have had presaged the perception of Krutikov’s project throughout the twentieth century – in western academia as well as in Soviet criticism. Its echoes could be heard, for example, when Richard Stites discussed Krutikov alongside the cosmist philosopher Nikolai Fedorov (who dreamt of reviving the dead and resettling them in other planets) and science fiction novels of Alexei Tolstoi and Alexander Beliaev in a chapter devoted to futurology and science fiction (Stites 1989: 170), or when Milka Bliznakov connected Krutikov’s ‘The City of the Future’ with the expectation of a miraculous technological breakthrough due to an anticipated foreign technological help (Bliznakov 1990).

However, a very different interpretation of Krutikov’s project was offered by his VKhUTEIN pedagogues, who immediately intervened to protect the reputation of their student and explain the principles and intentions of architectural pedagogy in the institute (Presidium arkhitekturnogo fakulteta et al. 1928). In their response, published in the same newspaper, the Architecture Department claimed that Levochskii distorted the project’s title by mislabelling what in fact was a ‘project for the solution of a new city’ as a ‘project for the construction of a new city’. Krutikov’s defenders argued that his exploration of the ‘future city’ was in fact an example of scientific research, which, being conducted within the Architecture Department, by necessity had to acquire the architectural form of an urban project. Rather than being dissociated from reality, ‘The City of the Future’ explored reality on a deeper level. What the Architecture Department claimed, was that Krutikov’s ‘Flying City’ was a not a science fiction, but a utopia, a word too painful for post-Revolutionary Soviet culture to be pronounced openly.

In what follows, I will explore how exactly Krutikov’s notorious project was connected to the reality of his times and what solutions it in fact offered for new cities. This will be achieved by an examination of the functioning of Krutikov’s architectural project as a utopia in the context of Soviet post-Revolutionary history – by a review of its alliances, possible readings, and inevitable ideological implications. I will demonstrate that ‘The City of the Future’ presented an uneasy coexistence of two alternative utopian paradigms, both connected to specific moments of early-Soviet history – the Romantic, post-Revolutionary utopia as a hope and the proto-totalitarian utopia as a rigid social organisation, associated with the economic politics of the First Five-Year Plan. In different ways they both explored the possibilities offered by geographical distance and the technological means of overcoming it: if the first paradigm was preoccupied with the impact of distance upon the visual perception of form, the second dealt with the new structures of organisation that distance necessitated.
The latter paradigm – represented by dystopian novels, cold-war political criticism, and the philosophies of freedom and democracy – is more familiar today. Moreover, it is more specifically connected to architecture, which it treats as a material means of organising and controlling hierarchical human relationships. Lewis Mumford, for instance, argued that the first cities appeared around religious centres as materialised utopias, earthly incarnations of divine order and harmony; the earliest utopias, on the other hand, such as Plato’s Republic and Aristotle’s Politics, were modelled after real, material cities of the ancient world (Mumford 1965).

For Mumford, both a city and a utopia were defined by their rationality, their order and regulation – as such, both of them were nothing but social machines, in which the inadequacy of technological knowledge was replaced with a complex social order.

‘By royal command, the necessary machine was created: a machine that concentrated energy in great assemblages of men, each unit shaped, graded, trained, regimented, articulated, to perform its particular function in a unified working whole. With such a machine, work could be conceived and executed on a scale that otherwise was impossible until the steam engine and the dynamo were invented’ (Mumford 1965: 284).

If an interpretation of ancient cities as social machines might be problematic, the identification of utopia with production and machine-like rationality certainly applies to an idea of a modern city and modernity in general, as epitomised in the project of Enlightenment as the ‘Age of Reason’ with its architectural ‘revolutionary’ utopias (Kaufmann 1952). An ideal modern city, such as Ledoux’s Salines de Chaux (1775 – 1778), was structured to optimise industrial production, organisation and control of the workers, who were identified with their social function.

The concerns of urbanisation and industrial production also regulated the so-called ‘Cultural Revolution’ that occurred in the USSR in the late 1920s, coinciding with the rapid and forced modernisation policy of the First Five-Year Plan (1928 – 1932) (Fitzpatrick 1974). After the semi-capitalist period of the New Economic Policy, which lasted from 1921 until 1928, the announcement of Stalin’s First Five-Year Plan was perceived by leftist intellectuals as the long-awaited return to revolutionary ideals. Indeed, Stalin’s industrialisation was based on a programme that he himself just a few years earlier condemned as unrealisable ‘left deviation’ (then espoused by Leon Trotsky). Artists followed the utopian trend of the Party: Tatlin’s flying machine Letatlin (1929 – 32); Ginzburg’s ‘social condenser’ as the new house-commune (1927); Leonidov’s Lenin Institute, a bold diploma project referring to the traditions of Ledoux (1927); the radical town-planning theories of urbanism and disurbanism (1929), and the ‘machine for rest’, the Green City (1929), all appeared during the cultural revolution. This brief blossoming of artistic activity allowed Manfredo Tafuri to call the late twenties ‘the second avant-garde’ (Tafuri & Dal Co 1986). In Mumfordian terms, the utopia of the First Five-Year plan was a collective human machine, a coercive apparatus necessary to complete the leap from an agrarian to industrial society – to produce the means of industrial production with preindustrial means.

This dehumanising utopia of the cultural revolution was very different from the utopias that originated during the New Economic Policy. Given that the Party preferred more realistic solutions to economic problems, these earlier utopias evolved in, and were restricted to, artistic avant-garde circles. Unlike the static and rigid utopia-as-social-machine, in which any change would bring the loss of balance and disjunction of parts, theirs was a dynamic, open and liberating understanding of utopia as hope and inspiration. Some twenty years later, this definition was made famous in his Principle of Hope (1938–1947) by German Marxist thinker Ernst Bloch, who claimed that

‘[t]he imagination and the thoughts of future intention … are utopian, … not in a narrow sense of the word which only defines what is bad (emotively reckless picturing, playful form of an abstract kind), but rather in fact in the newly tenable sense of the forward dream, of anticipation in general’ (Bloch 1986: 15).

Hope, for Bloch, was the emotion that allowed people to go forward, that gave them a direction, supported people on the way and ultimately made the future become a reality.

Similarly, for the theoretician of Soviet Constructivism Boris Arvatov, the purpose of a valuable, revolutionary – materialised [oveschestviennai], to use Arvatov’s own term – utopia was an organisation of creative power. In a 1923 issue of LEF [Levi Front Iskusstv; Left Front of Arts], the journal of the Constructivists and other radically minded, communist and materialist artists and thinkers, Arvatov suggested a utopia that pointed to the direction which a society had to take, igniting souls and inspiring minds:

‘Manilov practiced utopias in his leisure time: [it would be nice to build] a bridge, and on the bridge… etc.4 His utopias were born passively. The economist Sismondi
created another sort of utopia – he was fascinated with the past. Fourier was also a utopian, and his utopia was revolutionary. Breaking into the heart of the historic process, this utopia becomes a material power that organizes creativity. And then we name it with a capital U – Utopia. Because everyone knows that Marx would not have been possible without Fourier and his likes’ (Arvatov 1923: 64).

Unlike Engels’s ‘scientific socialism’, Constructivist utopia did not have to be or even look realisable. Another major LEF critic, Osip Brik, argued that it was precisely the manifested impossibility that made a utopia valuable. In 1923, commenting on a precursor of Krutikov’s utopian project, ‘A City on Leaf Springs’ by Constructivist Anton Lavinskii (Figure 1), Brik argued that only the unrealisable can ascend above the mundane, entering the immaterial theoretical realm.

‘I… assume… that this is unbuildable. The same questions arose with regard to Tatlin’s monument. I assume that both cannot be built, that engineers would smile at these discussions. Taking this into consideration, I insist that Lavinskii’s work possesses an immense significance precisely because it, first of all, arouses questions. … And if Lavinskii did not drive this utopia to the end, then this is a certain error of his, because he decided to connect somehow the utopia with today. This is his fault. It would have been more utopian if he had driven the idea of the liberation of the human from the immobile and untransformable city to the end … ‘ (Brik 1923: 56 – 57).

Architect Nikolai Ladovskii, the VKhUTEIN teacher of Krutikov, also did not remain indifferent to Lavinskii’s idea to supply houses with leaf springs. However, he found it unsatisfactory – insufficiently utopian. Articulated in the course of the discussion, Ladovskii’s notion of artistic utopia, in the same way as Arvatov’s concept of reified utopia, stimulated movement into the future and pointed to its possible directions. Unlike the more ambitious Arvatov, however, who was thinking in terms of society as a whole, Ladovskii confined himself and his disciples to the sphere of designed form. It was the absence of formal artistic thinking in Lavinskii’s project that dissatisfied Ladovskii.

‘The idea that is clear both from the drawings and from the descriptions, possesses a utopian character… As for the houses on leaf springs, I don’t see anything utopian here in what deals with the technical realisation. … Utopia is beauty and an interesting flight of fantasy – and Lavinskii’s project does not possess this interest. Is it interesting to lift a house? I can invent even better: make a house electromagnetic and it wouldn’t need material support. I will use electromagnets to transport cargo… All these are inventions in technology, not in art or architecture… As for technology, I can go even further. I can imagine my house flying and solve the sewer problem… This is a technologically-based utopia. But what I am interested to hear is not technological, but other artistic challenges. Technology: I can draw whatever I wish. I can take a number of balloons and suspend a house from them. Everything is moving, every chair… Would my idea be any worse? Give me an artistic utopia, the principles of which I don’t see here … ‘ (Ladovskii 1923: 59 – 60).
Ladovskii understood artistic utopia as forecasting new forms, which were to appear in the future in response to new modes of perception. Unlike their materialist colleagues and rivals, architectural Constructivists, and their LEF fellow-thinkers, the Rationalists focused on psychological phenomena, basing their approach to architecture on psychophysiology, a young ‘positive’ science that attempted to bridge the gap between the sciences of ‘spirit’ and those of ‘nature’ (Geisteswissenschaften and Naturwissenschaften) or, in other words, to suggest a way of measuring and verifying such immaterial substances as beauty and happiness. Ladovskii was convinced that the essence of architecture consisted not in exploring the capacities of technology and construction, but in investigating the expressive qualities of architectural form. ‘Space, not stone, is the material of architecture,’ Ladovskii liked to repeat. Good architecture for him facilitated the perception of spatial forms, economised perceptive energy, and increased the amount of vital energy, making humans happier and more optimistic. The easiness of perception of a spatial form for Ladovskii was determined by the clarity of the expression of physical forces at work in it, and an architect’s task was to make the form’s qualities manifest.

To see his vision of artistic utopia materialised, Ladovskii, however, had to wait until 1928, when Krutikov based his diploma project on the ideas and methods of his teacher. The project was a result of Krutikov’s experimental research at the Psychotechnical Laboratory, opened at VKhUTEIN in 1927 by Ladovskii in order to further the research of spatial perception. As a real psychological research laboratory, the one at VKhUTEIN was filled with equipment measuring human reactions to various environmental changes, in particular, the perception of various spatial parameters. In the spirit of architectural Rationalism, the purpose of these experiments was to develop new formal solutions adequately responding to the challenges of today and the future. Krutikov contributed by inventing machines that measured the perception of moving form. One of those, a moving band with an attached ‘dynamic element’ that was run in front of a fixed scale with two ‘static elements’ of the same size, allowed the evaluation of the perceived change of a size caused by movement; another, a rotating wheel, demonstrated the changes in the perceived remoteness of an element from the centre, which depended on the speed of the wheel’s rotation (Krutikov archive).

The results of these theoretical experiments were applied by Krutikov to his project that dealt with the future direction of evolution of architectural form, which, according to Krutikov, was to be determined by changing speeds. Krutikov’s ‘The City of the Future’ included two parts, a theoretical and a visual. Entitled ‘A Study of a Moving Form’ (Issledovanie dvizhushchiesia formy), the former consisted of sixteen illustrated tables, which juxtaposed the formal evolution of human dwellings with the evolution of the

Figure 2. Georgii Krutikov, A Study of Moving Form. Table 1: Visual Deformation of a Dynamic Form. Diploma project, VKhUTEIN, 1928. Courtesy of A. V. Schusev State Museum of Architecture, Moscow.

Figure 3. Georgii Krutikov, A Study of Moving Form. Table 2: The Composition of Dynamic Structures. Diploma project, VKhUTEIN, 1928. Courtesy of A. V. Schusev State Museum of Architecture, Moscow.
means of transport. Only the first three tables stood apart as the
‘three major problems in the theory of architecture of a dynamic
form,’ that is, three aspects of the perception of the latter.

The first of them presented the ‘Visual Deformation of a Dynamic
Form’ (Figure 2). It distinguished between two possible scenarios:
when the trajectory and the moving form were perceived
separately, and when they merged, creating a new form and,
as it were, a new body endowed with new physical qualities.
The idea was illustrated by several examples: ‘Lightning under
the "microscope of time" (in 1/100,000 part of a second),’ where
the extremely short exposure of the photograph elucidated
the structure of lightening; the movement of an aeroplane
and the fall of a meteorite, conversely, were imprinted on the
photographic plate by a very long exposure. The second table
dealt with ‘The Composition of Dynamic Structures’ (Figure
3). Krutikov described connections between static and vertical
compositions (e.g. a skyscraper), on the one hand, and between
dynamic and horizontal compositions (e.g. a profile of a city)
on the other. A railway line illustrated this contrast of statics
(vertical semaphore) and dynamism (train). Similarly, Krutikov
distinguished between the static and dynamic architectural
compositions. In the former, represented by St. Peter’s, the point
of intersection of compositional axes (the goal of the movement)
was located inside the building, while a simple cross plan was
complicated with an additional parallel axis. In contrast, the plan
of a dynamic structure (e.g. a dirigible gondola) was based on
a single horizontal axis, longing to leave the boundaries of the
construction. ‘The Form-Making of a Dynamic Element’ was
the subject of the third table, in which Krutikov presented the
discovery he made with the help of machines designed by him
at the Laboratory: ‘when moving, two equal forms are perceived
as having different sizes depending on their location on the axis
of movement.’

The remaining thirteen tables mobilised the methodology of
historical materialism to explain why the urbanism of tomorrow
would inevitably soar in the air. The evolution of the design
of the automobile, train, ocean liner, dirigible, and airplane
demonstrated an increasing smoothness and improvement of
aerodynamic qualities. Western ‘movable dachas’ (automobile
trailers, tents, and sleeping places in boats, airplanes, and
cars) were ready prototypes of the future movable dwelling.
The lightness of materials and constructions allowed for the
‘Portability of Moving Trains’. The evolution of power engineering
implacably led in the direction of the diminution of machine size.
Confronted with these challenges of the environment, a building
developed from a cave to ‘a house in the air’, while man was
preoccupied with conquering ‘new spaces and novel viewpoints’
an aeroplane view of the earth, open air spaces, the stratosphere,
a sky-rocket for interplanetary connections, outer space and the

Krutikov’s tables attempted to respond to the challenge of
Ladovskii, who urged architects to develop shapes that respond
to and facilitate human perception. Postulating the future
multiplication of speed and mobility, Krutikov discussed the
consequences of this multiplication for the formal language of
architecture and transportation design. Had Krutikov’s project
consisted only of the theoretical part, it would have perhaps
remained a perfect illustration of Ladovskii’s notion of artistic
utopia – the notion that appeared during the New Economic
Policy. But it did not.

The second, visual part of Krutikov’s diploma project offered a
graphic representation of ‘The City of the Future’, in which the
theoretical formal discoveries presented in the diagrams were
embodied into a vision of a city. The unusual – experimentally
determined – shapes of high-speed vehicles and objects

---

perceived from those, represented by Krutikov as spaceships and hovering houses, reminded Levochskii of the science fiction fantasies of Jules Verne and H. G. Wells, while for Krutikov himself they made him think of the moon adventures of Baron Münchhausen (Krutikov, ‘Arkhitektura buduschego’). Moreover, subjected to the conventions of the discipline and to the new concerns of Soviet society, Krutikov's utopia acquired the form of a city – and with it, the static, proto-dystopian regularity of a machine. Artistic utopia became supplemented with dashing science fiction rhetoric and merged with the dominant narrative of utopia as a social structure.

Represented by Krutikov, 'The City of the Future' consisted of two parts: the vertical one (the residential zone), which was suspended in the air, while the horizontal one (the production zone) was sprawled on the surface of the earth (Figure 4). Both parts were immobile and were tightly connected with each other, thus betraying the fixation on the relationship between life and production within a city, which was so characteristic for modernist urbanism. The plan of the earthly production zone resembled a whirlpool twisting towards the centre; each of its segments contained one of the industrial or agricultural sectors. The residential zone, which appeared to be a paraboloid with a top facing down, was suspended in the atmosphere exactly above the production zone: the surface of this paraboloid was formed by many layers of hovering individual residential complexes, located in tiers one above another. As both zones of the city were static, the connection between them was made possible by flying capsules – 'individual moving cells.'

Nevertheless, in spite of its new utopian form of a city and a social machine, the visual part of Krutikov's project reflected Ladovskii's vision. It applied to architectural practice the experimental and theoretical discoveries made by Krutikov in regards to the distortion of moving form. The paraboloid shape of the city, for example, existed only in the perception of the beholder, which united the rings of hovering residential complexes into a gleaming thimble. Looking at Krutikov's drawing, one might have thought that the city was falling down like the meteorite whose photograph was presented in theoretical part of the thesis – perhaps foreseeing this possible misunderstanding, Krutikov had cautiously notified us that the city is stably attached to the production zone below. A careful observer would, therefore, have suggested that the view presented by Krutikov was taken from an individual moving cell that was just taking off from the earth to its harbour in the residential part of the city. Perhaps the same perceptual distortion of form in the mind of a moving subject explained why the swirling 'petals' of the production zone were depicted on the view as a series of circles. At the same time, the juxtaposition of the horizontal and the vertical parts of the city recalled the discoveries presented in the project's analytical part (the composition of dynamic and static structures), while the usual plan of the earthly sector of the city without straight lines ensured that the sector was perceived as static (as opposed to a possible plan of a circle divided into segments) in contrast to the dynamism of the residential zone. However, being observed from above, it presented a quintessentially dynamic form of a revolving wheel.

As the new 'moving' architecture was in fact static, the movement of the observer and, therefore, transportation played a crucial role in Krutikov's project. The main 'thoroughfare' coincided with the axis of the paraboloid, from which sprang 'side streets', radial in the residential part (hovering above each other) and bending in the working one (coinciding with the axis of an industrial area). The communication between the Earth and the hovering edifices was provided by a universal individual means of transportation, the individual moving cell, which could move in the air, on the earth, in and under the water, and was easy to park within the immobile hovering structures. The vehicle was comfortable enough for a short-time dwelling and served as a movable living cell, where one could live en route and during the stops outside the city. It was suitable for one and was provided with foldable furniture hidden into the walls; its shell was elastic and could modify its shape depending on the pilot's position.
In consonance with his theory of evolution of architectural form, Krutikov's first projects for 'The City of the Future' (preserved in his archive) included mobile habitations grouped around a static (administrative and cultural) core and loosely connected to movable production and agricultural zones. In case of an epidemic, Krutikov, explained, the city could easily fly asunder (Krutikov, 'Panarkhitektura'). Consequently, if initially the theory of 'movable architecture' required an invention of new standardised, light and collapsible constructions, they were afterwards rejected in favour of a fixed core of residential blocks (Krutikov, 'Sotsialisticheskii gorod'). These were of three different types. The first was a labour-commune, a complex vertical organisation of eight five-storey residential blocks and a horizontal communal block underneath (Figure 5). In the second type, a static dwelling, the 'compact labour-commune', individual living cells were assembled into one giant cylindrical volume. The third type was a hotel for city guests. It comprised a vertical block, which consisted of a multi-tier system of honeycombs for short-term parking at the bottom, the lodging area in the middle, and the spaces of communal use at the top.

According to Krutikov's notes, his utopia, on which he began working a few years earlier, did not acquire the static form of 'The City of the Future' until after 1925. That year, Krutikov made the first public presentation of his project – it failed completely. 'They fell on me heavily, as the Russians do, – lamented Krutikov to himself, – giving heavy advice, which was nevertheless petty comparing to the generality of the idea' (Krutikov, 'Gorod budushego'). The solution that Krutikov found for this problem was probably influenced by the emerging cultural revolution. In the second half of the 1920s, quotations from the classics of Marxism-Leninism found a permanent place in his notes. He became preoccupied with the vanishing of traditional family, Lenin's concern for children, and collective time-spending. He had to realise that an industrially-efficient machine-like society was based on a superior organisation, an organisation of work, recreation, social structure, and urban environment. And it was precisely organisation that was so difficult to achieve in an anarchic agglomeration of individual flying cells. Now the displacement of the city into the atmosphere was explained by its organisational advantages: the earth was freed for production and cultural establishments, gardens and reading-houses (Krutikov, 'Gorod buduschego'). An industrial city required a definite location even if had overcome gravitation; it was rooted not in the earth, but in the relationships of production that were no less static than plains and mountains.

Conclusion

This article assessed Krutikov's 'The City of the Future' in the context of the historical transition between the situations of the New Economic Policy and the First Five-Year Plan. It argued that this transition was accompanied by a shift in the understanding of the function of art and architecture. If in the early 1920s architecture was perceived – first of all, by the architects themselves – as an autonomous aesthetic project, by the end of the decade its functions, in accordance with the new economic goals that the country was facing, were reinterpreted as organisational. Likewise, Krutikov's 'The City of the Future,' a utopia exploring the consequences of new means of transport and new distances for urbanism, in the course of the 1920s evolved from an avant-garde artistic utopia, utopia as a hope and a direction, into a Mumfordian utopia-as-a-machine, in which some traces of the initial idea – elusive dynamic connections between the city's static parts, flying capsules and shifting perspectives of experimentally-determined shapes – were still recognisable. Along the way, movement was refracted into statics and freedom into order, reflecting the ongoing mutation of early-Soviet limited freedom and pluralism into a rigid totalitarianism.

Krutikov's utopia – alongside all the other utopias of the Soviet Cultural revolution – became obsolete in the early 1930s, when the transition from First to Second (1933 – 37) Five-Year Plan marked the completion of the creation of the material base for industrial production. The ensuing cultural turn, known in western historiography as 'The Great Retreat,' was seen by many as a de facto abandoning of socialist aspirations and a tacit return to tsarist politics (Timacheff 1946). For art and architectural historians, this turn signified a violent assassination of the avant-garde by the state. Indeed, what was needed now was not a social organisation of people that could replace the non-existing machinery, but people's hard, devoted work on the machinery that had just been acquired. The new totalitarian utopia was one of real, productive labour.
References

Arvatov, B. (1923) ‘Oveschestvlennaiia utopiia’ ['Reified utopia'], LEF, vol. 1, pp. 61-64


Kaufmann, E. (1952) Three Revolutionary Architects: Boulée, Ledoux, and Lequeu, Philadelphia: American Philosophical Society


Levochskii, N. (1928) ‘Sovetskie zhiul’-verny. VKhUTEMAS gotovit ne stroitelei, a fantazerov. Proekt postrojki “Letaiuschego goroda”, Postrojka, 3 July 1928


Presidium of Architecture Department, professional and student bodies of VKhUTEIN (1928) ‘My gotovim ne “sovetskikh zhiul’-vernov.” Arkhitekturnyi fakul’tet na dolzhnoi vysote’, Postrojka, 12 August 1928


Archival Sources

Georgii Krutikov, ‘Arkhi tekutka buduschego,’ 192-, Georgii Krutikov Archive. The Archive of Schusev State Museum of Architecture, Moscow


Endnotes

1 VKhUTEMAS (Vysshiye Khudozhestvenno-Tekhnicheskiye Masterskiye – Higher Art and Technical Studios), the famous avant-garde school of art and architecture was reorganised as VKhUTEIN (Vysshi Khudozhestvenno-Tekhnicheskii Institut – Higher Art and Technical Institute) in 1926.

2 Nikolai Ladovskii (1881 – 1941) – Soviet architect, one of the leaders of Soviet modernist architecture, was the head of the Association of New Architects (ASNOVA), a prominent VKhUTEMAS/VKhUTEIN pedagogue, and the leader of the ‘Rationalist’ movement, which affirmed psychophysiology as the methodological base for the new architecture.

3 See, for instance, the distinction between ‘utopian’ and ‘scientific’ socialism suggested by Engels. Engels, Herrn Eugen Dühring’s Umwälzung der Wissenschaft. Leipzig, Druck und Verlag der Genossenschafts-Buchdruckerei, 1878.

4 Manilov is a protagonist of Nikolai Gogol’s novel The Dead Souls (1842), who entered Russian culture as a symbol of fruitless wishful thinking.

5 Here and throughout the rest of the article the translations from Russian are provided by the author.