index

4-10
Clickspace I

11-15
Clickspace II

16-19
Collage-o-matic
Clickspace I

Clickspace I is a drawing series which explores the moment when we click “print” and translate a virtual image into a computer-plotted drawing.

By pulling the paper away from a specially-designed plotter at regular intervals to interrupt a drawing process, a “time-lapse” computer drawing is created. The Clickspace I series show the order in which a computer plotter draws a given input image.
Time-lapse Drawing Machine, 2015, Custom CNC Plotter.

Dimensions: 4 3/4" x 3 1/2" x 8"
Time-lapse Drawing Machine Short, 2015, Film.
Materials: Custom Drawing Machine, G-Code, CAM Software.
Length: 3 minutes.
O.M. Ungers Marburg Axonometric Time-lapse, 2015, Drawing Series A.
Materials: Graph Paper (8x8 quadrille), 0.1 Micron Pen.
Dimensions: Seven 2” x 20” strips.
Time-lapse Iconic Elevations, 2015, Drawing Series B.
Materials: Graph Paper (8x8 quadrille), 0.1 Micron Pen.
Dimensions: Eight 2" × 20" strips.
Time-lapse Iconic Plans, 2015, Drawing Series C.

Materials: Graph Paper (8x8 quadrille), 0.1 Micron Pen.

Dimensions: Eight 2" × 20" strips.

01 Villa Rotunda
02 Carpenter Center
03 Glass Blowing Museum
04 Diamond House A
05 Frank House
06 Wolfsburg CC
07 Villa Savoye
08 Brick House
Villa Savoye Axonometric Time-lapse, 2015, Drawing Series D.

Materials: Graph Paper (8x8 quadrille), 0.1 Micron Pen.
Dimensions: Eight 2" × 20" strips.
Le Corbusier Plans Time-lapse, 2015, Drawing Series E.

Materials: Graph Paper (8x8 quadrille), 0.1 Micron Pen.

Dimensions: Eight 2” × 20” strips.
Clickspace II

Clickspace II is a series of 3D printed objects which explores the moment when we click “print” and translate a virtual model into a 3D print.

In order to be 3D printed, virtual models must first be translated by an algorithm into a series of triangles (known as “meshing”). By adding Z height to the triangles in the order in which they are produced by a computer program, it is possible to see the order in which a computer meshes a given 3D model.
Time-lapse Mesh Operations of 3D Architectural Files, 2016, Series A.

Tools: Objet 500 3D printer, custom Processing script, sandpaper, buffing compound.

Dimensions: Eight 1" x 1" x 5" Objet 500 3D prints.

01 Taj Mahal 02 Hagia Sophia 03 Building I 04 House I 05 House II 06 House III 07 Building II 08 Teatro del Mundo
Time-lapse Mesh Operations of Assorted 3D Files, 2016, Series B.

Tools: Objet 500 3D printer, custom Processing script, sandpaper, buffing compound.

Dimensions: Eight 1" x 1" x 5" Objet 500 3D prints.

- Dishwasher
- Bit lock
- Milk crate
- Trailer
- Phone booth
- Pencil Sharpener
- Piano
- DSLR Camera
Time-lapse Mesh Operations of Assorted 3D Files, 2016, Series B.

Tools: Objet 500 3D printer, custom Processing script, sandpaper, buffing compound.

Materials: Tango Black and Tango Clear resins.

Dimensions: Eight 1" × 1" × 5" Objet 500 3D prints.
Time-lapse Mesh Operations of Assorted 3D Files, 2016, Series B.

Tools: Objet 500 3D printer, custom Processing script, sandpaper, buffing compound.

Dimensions: Eight 1" x 1" x 5" Objet 500 3D prints.

17 Airplane 21 Bleachers I
18 Dish tray 22 Bleachers II
19 Lifeguard Hut
20 Wrist watch
Collage-o-matic

The Collage-o-matic is a computer script designed to sample a set of input drawings and recombine them based on user settings.

The user can select the number of input files to be sampled as well as how much data should be taken from each “seed” file. For this exercise, a series of axonometric drawings of the Marburg Houses (1982) by O.M. Ungers were chosen.
Collage-o-matic v.1.0

input series: O.M. Ongera Marburg 1952

sample size:
0 100
12

samples:
0 100
55

generate

save collage: Ongera_monster_12
O.M. Ungers Marburg Axonometric Follies, 2015, Series A.
Dimensions: Digital Vectors.
O.M. Ungers Marburg Axonometric Follies, 2015, Series A.
Dimensions: Digital Vectors.

01 Folly VII (s:3/i:6)
02 Folly VIII (s:4/i:10)
03 Folly IX (s:7/i:15)
04 Folly X (s:10/i:5)
05 Folly XI (s:3/i:7)
06 Folly XII (s:8/i:8)