Subject Number(s)

4.570 (H) /4.550 (UG)

Subject Title and Subtitle

[Computation Design Lab]

Learning from design heritage: Research incubation workshop on data-driven method

Term offered

Spring 2025

Instructor(s)

Takehiko Nagakura

Co-instructor: Daniel Tsai

Guest speakers: Rohit Sanatani, Woongki Sung, Nikolaos Vlavianos, Taro Narahara

TA(s)

Xiaoyun Zhang

Credit Units

4.550: 2-2-8 Under grad : 4.570: 2-2-8 Grad

Level

4.570 (H) /4.550 (UG)

Prerequisites

There is no specific prerequisite, but students are expected to have a background in architectural design and computation, and be familiar with basic representational skills for image processing, drafting, modeling and scripting.

Schedule

Lecture/Review: Mon 11:00-2:00, Room 8-119 Lab and Seminar: Tue 7:00-8:30pm, Room 5-216

Subject Description

This class investigates recent technologies that helps studying "design heritage", spatial designs that surround our lives. In the class, design heritage is to broadly include architecture, city and landscape; the built, demolished, and planned; and culturally important as well as the banal ones. We will look at various data-driven methods relevant to learn them, such as photogrammetry, image/video feature detection and semantic analysis, machine learning, physiological sensors, natural language processing, augmented and virtual reality, and gamification. By examining how to collect data, how to process the raw data into forms useful for evaluation, and how to interpret and apply the findings, the students build a foundation for research projects bettering our understanding of the design heritage around us. Each week during the first half of the class, the class will invite a guest speaker, conduct a short hands-on exercise on a data processing tool, and read relevant literature from previous research projects in design

heritage. A selection of relevant past MIT theses projects in SMarchS and PhD programs are included as major referential works and examples. The second half is run in a workshop format with desk critiques, where students are expected to design and develop a small research project individually or in a group. There is no requirement for computational skills for this class, although familiarity with some scripting language is an advantage.

No fieldwork/field trip is planned for Spring 2022 class.

List of Subject Objectives

Develop ability to represent an architectural/landscape/city design heritage and historic places Survey various data-driven approaches for analytical research of design heritage Practice design of research method/pipeline using data-driven approaches Practice field methodology for capturing spatial forms and events Explore means to deliver digitally enhanced architectural representation online, on-site, or in museum setting

Evaluation Criteria

Class participation: 25% Short exercises (6 assignments): 30% Final Project Development: 15% Final review: 30% (Participation is required.)

Schedule of Exercises, Projects, Quizzes, Exams or Assignments

Weekly Sche	edule		
Week 01	Mon, Feb. 03	Introduction	
	+ Tue, Feb. 04	Using image data: Scraping SNS, online crowd-sourcing	
		Mechanical Turk, LAMP pipeline	
		Ex0 out: Q/A (Student selection)	
		Guest Instructor: Rohit Sanatani	
		Ex1 out: Learning through image data – image segmentation	
Week 02	Mon, Feb. 10	Measuring human response to spatial designs	
	+ Tue, Feb. 11	Physiological sensor (EEG/SGR), eye-tracking	
		Ex1 in: Review and discussion	
		Tutorial: TN and XZ	
		Ex2 out: VR and physiological measurement – Affective Computing	
Week 03	Mon, Feb. 17	Presidents Day Holiday (All Monday classes shift to Tuesday)	
	+ Tue, Feb. 18	Representations and UI, data collection from visualization device	
		Tutorial: TN and XZ	
		Ex3 (part of Ex2): Photogrammetric modeling, Eye Tracking	
Week 04	Mon, Feb. 24	Using videos: motion tracking/segmentation, panoramic projection	
	+ Tue, Feb. 25	Ethnography of heritage places, pedestrian simulation	
	·	Ex2 in: Review and discussion	

Tutorial: XZ

Ex4 out: Analysis from video recordings – gesture recognition

Week 05	, 01 0 0			
	+ Tue, Mar. 04	Spatial layout, sketches, photos		
		Ex4 in: Review and discussion		
		Guest Instructor: XZ + Woongki Sung		
		Ex5 out: Finding and generating patterns by machine learning		
Week 06	Mon, Mar. 10	Examining literature on spatial designs		
	+ Tue, Mar. 11	Natural language processing, sentiment study of heritage places		
		Ex5 in: Review and discussion		
		Instructor: DT		
		Ex6 out: Design Analysis through text		
Week 07	Mon, Mar. 17	Ex6 in: Review and discussion		
	,	Final project guideline (Title, idea, method, deliverable, resource)		
		[in-class session] Brainstorming: Final project topic and method		
	+ Tue, Mar. 18	Workshop/desk critique		
Week 08	Mar 24 – Mar 28	MIT Spring Break		
Week 00	11111.24 - 11111.20	Will Opting Dreak		
Week 09	Mon, Mar. 31	Presentation: Final project proposal + initial progress		
	+ Tue, Apr. 01	Workshop/desk critique		
	· 1			
Week 10	Mon, Apr. 07	Human-subject study in cognitive psychology, COUHES,		
gamification				
	+ Tue, Apr. 08	Guest talk: Daniel Tsai		
		on Analysis of Palladio's Four Books using NLP		
		Workshop/desk critique		
Week 11	Mon, Apr. 14	Interim review: Final project		
	+ Tue, Apr. 15	Guest talk: Nikolaus Vlavianos		
		on Analysis of Spiritual Space (HMD and GSR)		
		Workshop/desk critique		
Week 11	Mon, Apr. 21	Patriots Day Holiday		
	+ Tue, Apr. 22	No class		
	, <u>F</u>			
Week 13	Mon, Apr. 28	(Data-driven) AI tools for design generation		
	+ Tue, Apr. 29	Guest talk: Rohit Sanatani		
		on Analysis of Urban Data Matrix by Deploying Analogy		
		Workshop/desk critique		
Week 14	Mon, May 05	Cultural heritage practice for preservation and online/museum		
exhibition	- ,			
	+ Tue, May 06	Guest talk: Woongki Sung		

on Generation of Architectural Site Plan through Bayesian Network
Workshop/desk critiqueWeek 15Mon, May 12Final presentation
Reserved for backup (MIT Last day of class)

May 16-21	MIT Final Exam period
May 28-30	MIT Commencement

Textbooks and Reading Sources

All materials are provided online from the resource section of the class home page as links to text, video, and interactive media. The followings is a snapshot of the resource section.

Machine Learning + Image/Video/3D models

[ML] (architecture) W. Peng, F. Zhang, T. Nagakura 2017 paper 2018 Smarchs Thesis Machines' Perception of Space: Employing 3D Isovist Methods and a Convolutional Neural Network in Architectural Space Classification

[ML] (architecture) W. Peng 2023 PhD Thesis demovideo Visual Experience in Temporal Situational Context: Method of Matching and Modeling in Design

[ML] (architecture) C. Cheng 2024 Smarchs Thesis

Alive Scene: Participatory Multimodal AI Framework for Collective Narratives in Dynamic 3D Scene

[ML] (architecture) C. Cheng, T. Nagakura, D. Tsai 2023 conference A Synergy of AI Observation and Design Tool: Leveraging Multifaceted AI Techniques for Encoding Human Behaviors and Stories in Space

[ML] (architecture) S. Miao, T. Nagakura, D. Tsai 2024 conference Deep Spatial Memory: Quantifying Architectural Spatial Experiences through Agentdriven Simulations and Deep Learning

[ML] (architecture) C. Wu 2020 March thesis Machine learning in housing design : exploration of generative adversarial network in site plan / floorplan generation

[ML] (architecture)H. Tu, G. Varinlioglu, L. Gao, B. Chen, T. Nagakura 2023 conference Feeling Like Humans: Low-cost wearable sensors for design research in the age of AI

[ML] (urbanism) R. Sanatani, T. Nagakura 2023 conference The Many Faces of the Metropolis: Unsupervised Clustering of Urban Environments in Mumbai Based on Visual Features As Captured in City-Wide Street-View Imagery [ML] (urbanism) R. Sanatani, T. Nagakura, D. Tsai 2022 conference Presentation Video (SIGraDi)

The Tourist's Image of the City: A comparative analysis of the visual features and textual themes of interest across three global metropolises

[ML] (heritage) P. Gonzalez, T. Nagakura 2020 paper 2021 PhD thesis (not for distribution)

AI Visitor: Tracking and simulating pedestrian trajectories in Machu Picchu

[ML] (architecture) R. Villalon 2017 PhD Thesis Data mining, inference, and predictive analytics for the built environment with images, text, and WiFi data

[ML] (architecture) X. Zhang 2021 Smarchs Thesis Envisage: Investigating Design Intentions, Visual Perception through Eye Tracking of Architectural Sketches

[ML] (architecture) J. Park 2015 PhD Thesis Synthetic tutor : profiling students and mass-customizing learning processes dynamically in design scripting education

[ML] (urbanism) Q. Liang, M. Wang, T. Nagakura 2020 paper 2020 Smarchs Thesis Video Urban Immersion: A Web-based Crowdsourcing Platform for Collecting Urban Space Perception Data.

[ML] (architecture) J. Peraino 2020 March thesis Architectural epidemiology : a computational framework

[ML] (architecture) Y. Liu 2020 Smarchs Thesis Measuring the immeasurable : an experiment for a machine to map low-level features to high-level semantic representation of architectural space using a single view photo

[ML] (urbanism) T. Sun 2020 Smarchs Thesis Synthesizing 3D morphology from a collection of urban design concepts

Data Mining/Visualization/Analysis (for reference)

[crowd-sourcing] (urbanism) Y. Yoshimura, S. He, G Hack, T Nagakura, C Ratti 2020 paper 2014 Smarchs Thesis Quantifying Memories: Mapping Urban Perception

[data mining](urbanism)X. Chen2011 Smarchs Thesisdemo video(Singapore)demo video (Paris)Seeing differently : cartography for subjective maps based on dynamic urban data

[data mining] (urbanism) N. Chen 2016 Smarchs Thesis Urban data mining : social media data analysis as a complementary tool for urban design

[data mining] (architecture) S. Zhang 2020 March thesis Value in design? Features, pricing, and design strategies

Other Projects (for reference)

[ML] (toolkit) Chin-Yi Cheng 2017 Smarchs Thesis Interactive design process based on augmented intelligence : a framework and toolkit for designers to interact and collaborate with AI algorithms

[Measurment] (handcraft) G. Bernal 2014 Smarchs Thesis Learning from master's muscles : EMG-based bio-feedback tool for augmenting manual fabrication and crafting

[BIM] (architecture) T. Nagakura and W. Sung 2017 paper Spatial Typology for BIM - Preassembling for Synthetic Architectural Design

[Participatory] (architecture) J. Choi 2014 March Thesis Democratic Play : crowd-sourcing through games for architectural design

[Participatory] (architecture) Y. Hou2016 March Thesis Engaging public voice in big data society : an on-line participatory design experiment

AI Platform Tools (for reference)

[ai tool]	(image-based GAN)	Pix2Pix toolkit	
[ai tool]	(image/video-based	l) Google Vision AI	toolkit
[ai tool]	(comprehensive)	Microsoft Azure Cognitive	Services toolkit
[ai tool]	(video-based)	Moments in Time Dataset	toolkit
[ai tool]	(video-based) STAR	toolkit	
[ai tool]	(Agent-based)	Unity ML-Agents Toolkit	toolkit
[ai tool]	(Reinforcement Lea	rning) Gym toolkit	

Lab Fees (if any)

None