4.401/4.464 Environmental Technologies in Buildings – Syllabus

Term: Fall 2025

Department: Architecture

Instructor: Christoph Reinhart (creinhart@mit.edu)

Teaching Assistants: 4.401 Sam Wolk (<u>szvsw@mit.edu</u>)

4.464 Ben Taube (<u>taube@mit.edu</u>)

Time & Location: Lecture - Mondays 11.00 - 12:30, Room 9-354

Lecture - Wednesdays 11.00 - 12:30, Room 9-354

Lab - Fridays, 10:00 - 11.00, Room 1-134

Lab - Fridays, 11:00 - noon, Room 3-442

Course Description

Welcome to 4.401/4.464! The primary focus of this course is the study of the thermal, luminous and acoustical behavior of buildings. The course examines the basic scientific principles underlying these phenomena and introduces students to a range of technologies and analysis techniques for designing comfortable indoor environments. Students will be challenged to apply these techniques and explore the role energy, light and sound can play in shaping architecture.

Following a review of how to analyze a site's climate and local energy mix, the course will introduce students to the art and science of lighting buildings along with rules of thumb and computer-based methods for analyzing daylight within and around buildings. The third part of the course is dedicated to the principles of heat storage and heat flow into and out of buildings. Basic manual and computer-based methods to predict the energy use of buildings will also be discussed. In order to introduce students to the effective use of computer simulations during design, a *Building Optimization Game* that mimics a sustainable design charrette will be organized on **Nov 24**. During the game, student groups will compete who develops the building with the lowest energy use within a given cost budget and for a given climate. Your group will need a Windows laptop for the day. Check with STOA if you need to borrow one. The last part of the course provides an overview of building acoustics and sound attenuation.

The course format consists of semiweekly lectures and weekly labs. Individual and group assignments as well as in-class presentations and exercises will help students to study the use of environmental technologies in contemporary buildings.

Learning Objectives

The course aims to help students to:

- understand and apply the scientific principles underlying the thermal, luminous and acoustical behavior of buildings,
- learn to evaluate the pros and cons of a range of technologies for creating comfortable indoor environments,
- conduct a series of design analysis workflows regarding climate, building energy use and daylighting and
- acquire the knowledge required to critically discuss/present the environmental concept of a building.

Date: 04 September 2025 Page 1/4

Requirements

The following deliverables will be required to pass this class:

- Attendance of semiweekly lectures and Friday Labs. Up to two unexcused absences per term.
- □ Timely completion of assignments. <u>Late assignments will not be accepted</u>.
- Completion of a group course project. The course project will be to develop and present an environmental concept for a small office or multi-unit residential building. More details will be provided later in the term. Final presentations for 4.401 will be on **Dec 5**. Presentations for 4.464 will be scheduled during Exam Week (Dec 15 to 19).
- Preparation of in–class group presentations on one of the AIA Cote Top Ten Projects for the current year (http://www.aiatopten.org/). Presentations will be timed and should have the following content:
 - Overview of the main environmental features of the building (3/15 points)
 - Discussion of predicted energy use. Review predicted and actual energy use for the building according to the AIA website and assess how both compare to the LBNL Building Performance Database (https://bpd.lbl.gov/explore). How much better is the AIA building than the average? What design strategies contribute the most to the savings? (5/15 points)
 - Daylighting performance. Construct a simple 3D model of the whole or key spaces within the building. The model does not have to be very detailed, but should include the major façade openings and elements so that you can evaluate how daylight is being distributed and controlled throughout the building. (5/15 points)
 - Discuss what you like and/or dislike about the building and its environmental concept. (2/15 points)
- Active participation in class discussions.

Methods of Assessment

Grades will be determined based on:

- Quality and timely submission of completed assignments (65%)
- □ Final course project (20%)
- □ AIA case study presentation (10%)
- □ Participation in class discussions (5%)

Please familiarize yourself with MIT's Academic Integrity Expectations at http://web.mit.edu/academicintegrity/.

Date: 04 September 2025 Page 2/4

Software

Throughout the course we will be using the following software packages. You will be needing a Windows computer since ClimateStudio only runs under Windows.

- Rhinoceros forms the CAD backbone of all environmental analysis tools that we will be using in this class. Students should have a working version of Rhinoceros 7 or 8 installed on their laptops or workstations. The Department of Architecture provides free Rhino access to all students.
- ClimateStudio is a highly optimized daylighting and energy modeling plug-in for Rhino. We will be using ClimateStudio for assignments on solar radiation, daylighting and energy simulations. Students can download a Windows installer from https://www.solemma.com/cs-installers. An educational license code for ClimateStudio will be provided during the first week of class.

Bibliography

Information required for completing all assignments will be provided through the lecture notes, selected online materials as well as the *Driven Design I* and *Daylighting Handbook Volumes I + II* which can be purchased during regular office hours in room 5-418 (Building Technology suite) via Venmo for \$22 per volume.

Date: 04 September 2025 Page 3/4

Wk	Monday Lecture for 4.401/4.464	Wednesday Lecture for 4.401/4.464	Reading *	Material to review before Friday lab	Friday Lab 4.464 10.00 – 11.00, Room 1-134	Assignment (individual group, due date)
	11.00 – 12.30, Room 9-354	11.00 – 12.30, Room 9-354			4.401 11.00 – noon, Room 3-442	(,
1		Sep 2 12:30pm in 1-150 L01 Course Introduction Climate Change and the Building Sector		Go through <u>CANVAS</u> - <u>Course software</u> steps	Sep 5 Lab: Review course software; finish introductions	Ass 1 Essay (individual, Sep 12)
2	Sep 8; L02 Energy Use in Buildings	Sep 10 L03 High Performance Buildings	CDD1, CCD2	 Introduction CS GUI (video) Building Performance Database (web site) 	Sep 12 Lab: Benchmarking; form groups	Ass 2 Personal Benchmarking (individual, Sep 19)
3	Sep 15 L04 Understanding Climate – Solar Radiation	Sep 17 L05 Understanding Climate – Wind, Temp. and Rel. Humidity	DH3, DH6, CDD3	Direct Shading Study (video)	Sep 19 No labs (student holiday)	Ass 3 <u>Direct Shading Study</u> (individual. Sep 26)
4	Sep 22 L06 Thermal Comfort + Climate File Quiz	Sep 24 No class (instructor traveling)	CDD4	CBE Thermal Comfort Tool (video)	Sep 26 Lab: Thermal comfort study	Ass 4 Thermal Comfort Study (individual, Oct 3)
5	Sep 29 L07 Active Solar; Introduction to Course Project	Oct 1 L08 Light and Human Vision	DH9, DH1, DH2, DH4	 Solar Radiation Analysis (video) Sizing a PV System (video) 	Oct 3 Lab: Net Zero Feasibility Study; Photometry	Ass 5 Net Zero Feasibility Study (group, Oct 10)
6	Oct 6 L09 Daylighting Design Principles	Oct 8 L10 Daylight Simulations + Daylight Availability Metrics	DH5, DH10, DH11	CS GUI for Daylighting (video) LEED Daylight Credit (video)	Oct 10 Lab: Daylight availability simulations	Ass 6 Daylit Precedence & Massing Daylight Availability Study (group, Oct 17)
7	Oct 13 No class (Indigenous Peoples Day)	Oct 15 L11 Visual Comfort	DH13, DH14,	Annual Glare Study (video)	Oct 17 Lab: Glare and view	Ass 7 <u>Visual Comfort</u> (group, Oct 24)
8	Oct 20 L12 Electric Lighting + Controls + Occupant Behavior	Oct 22 L13 Load Calcs & Internal Gains	DH15, CDD5	Electric Lighting (video)	Oct 24 Lab: Electric Lighting	Ass 8 Electric Lighting (group, Oct 31)
9	Oct 27 L14 Thermal Mass + Heat Flow	Oct 29 L15 Insulation Materials + Window Technologies	CDD6, CDD7	Tutorial: Thermal Model Setup (video)	Oct 31 Lab: Building a thermal baseline model	Ass 9 Thermal Model Setup (group, Nov 7)
10	Nov 3 L16 Shading + Integrated Façade Design	Nov 5 L17 Indoor Air Quality + Fresh air requirements	DH16	Internal loads & envelope upgrades (video)	Nov 7 Lab: EUI study for internal loads and envelope properties	Ass 10 EUI Study (group, Nov 14)
11	Nov 10 No class (student holiday)	Nov 12 L18 Ventilation			Nov 14 Lab: Ventilation requirements	Ass 11 Ventilation Requirements (group, Nov 21)
12	Nov 17 L19 HVAC for Small Buildings	Nov 19 L20 HVAC for Large Buildings			Nov 21 Lab: HVAC selection; Intro to simulation game	Ass 12 P9_HVAC System Selection (group, Dec 5)
13	Nov 24 Simulation Game	Nov 26 AIA student presentations I			Oct 28 No Lab (Thanksgiving)	
14	Dec 1 L21 Acoustics I [Guest lecture: Ben Markham]	Dec 3 L22 Acoustics II [Guest lecture: Ben Markham]			Dec 5 Final Project Presentations for 4.401	
15	Dec 8 No Class (Core I review)	Dec 10 No Class				
16	Dec 15 - 19 Exam Week Final Project Presentations for 4.464					

^{*)} DH = Daylighting Handbooks; CDD = Climate Driven Design