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Abstract 
This research proposes a new strategy for estimating the embodied carbon in existing residential and 
commercial buildings. Most critical in this estimation is the structural system, up to two thirds of the 
whole embodied carbon of a building. Existing benchmarks rely on area normalized carbon content 
values that do not take the scaling effects of spatial structures – both horizontally and vertically – into 
account. The embodied carbon of a structure can be greatly over- or underestimated based on its 
effective size, when assessed with square meter averages or typological approaches from existing 
databases. We introduce an automated workflow that leverages generative structural design for the 
creation of a structurally-sound building model. Specifically, our method is applicable for large scale 
steel framing systems that are widely used for commercial developments. With this generative approach, 
we can accurately and instantly calculate the structural quantities and embodied carbon of a structural 
framing system without the need for manual input. The method is scalable to urban-level assessment. 
We show how calibrated simulation results achieve a sub 17% error margin when compared with real-
world buildings.  

Keywords: Embodied Carbon, Analysis, Generative Modelling, Housing Stock, Steel Structures, Steel Framing, 
Carbon, Hangai Prize 

1. Introduction  
In the coming three decades, over 226 billion square meters of buildings are projected to be built 
worldwide – a doubling of the global building stock [1]. With construction and energy use of buildings 
already accounting for almost 40% of current carbon emissions [2], there is an immediate need for new 
strategies that combine net zero energy building operation with net zero carbon construction practices. 
Combined, these two approaches have the potential to save over 150 GTCO2 emissions over the coming 
30 years (Figure 1) – up to a third of the current carbon budget [3]. While the bulk of previous efforts 
focused on reducing operational energy use, the figure underlines that we must start at decarbonizing 
the very foundations of buildings before they are built. 

In places such as Europe and the United States – where over two thirds of the anticipated building stock 
by 2050 is already built – the fight against emissions in the built environment will largely be focused on 
renovation of existing buildings and cities [1]. Detailed case studies for the redevelopment of a landmark 
building have revealed the enormous CO2 savings that can be achieved by renovation instead of building 
from scratch [4]. In certain cases, a retrofit can save more carbon than a newbuild in its entire lifetime. 
This emphasizes the importance of assessing embodied carbon in the existing building stock to better 
inform development decisions on both the building and urban scales, in addition to estimating carbon 
impacts of early-stage design decisions for new construction. 
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Figure 1: Excel model of building related emissions from buildings in the years 2020-2050. Embodied carbon 
emissions of 410 kgCO2/m2 for existing and new built and 100 kgCO2/m2 for retrofits are assumed. The Net Zero 

Operational assumes a fully decarbonized grid by 2050 and Net Zero Embodied and Operational assumes an 
additional linear decrease of embodied carbon from 2030 to 2040 to 0. Global floor areas and operational 

emissions are based on projections by the International Energy Agency (IEA) [1]. 

Better strategies are needed for both estimation and reduction of embodied carbon in current and future 
buildings. Existing benchmarks are inconclusive, using embodied carbon values with a wide range of 
carbon content, ranging from 300-1650 kgCO2e/m2, depending on the source [5]. This significant 
uncertainty and variance originates from highly diverse databases and statistical averages of general 
housing stock or varying building archetypes [6]. More accurate surveys can inform new strategies for 
minimizing embodied carbon in early design stages and can inform decision making on building retrofits 
and material choices.  

A net zero carbon production of building materials comes with significant technical challenges in 
availability and scalability of sustainable materials (such as timber) and production methods, that in 
many cases are not yet economically feasible, such as renewable steel or concrete production. This 
increases the importance of design strategies that can have a massive impact on embodied carbon: 
increased structural efficiency, optimization strategies for utilization of less material, reusability of 
materials [7], more economic and adaptive usage of space and longer lifespans of structures – building 
more with less [8]. 

Different computational strategies have been proposed to calculate and best estimate the embodied 
carbon impact of buildings. They have largely focused on surveys of recently constructed buildings, 
where building specifications and material quantities are already known. Where available, building 
information models (BIM) can be combined with a suite of specialist computational tools and material 
databases to assess their embodied carbon. Such an analysis can inform different material choices and 
design decisions in the later planning stages to reduce the embodied carbon [9]. When deployed on a 
larger scale, for city redevelopment or masterplans, accurate modelling of existing buildings is often not 
feasible, as it would require the manual creation of 3D BIM models and on-site surveys by specialists.  

To estimate the embodied carbon of un-built or un-surveyed buildings, area calculations from massing 
models can be multiplied with area normalized benchmarks. More detailed data on building elements 
such as façades can be included when specified in a building’s massing. However, area normalized 
estimation of a building’s structure can be highly problematic. An analysis of multi-story concrete 
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residential buildings in India showed more than 60% of the embodied carbon to be from the structure 
[10]. In the case of steel framed buildings the embodied carbon database EC3 reveals for their 
“Commercial Core & Shell - Steel Example” building, that 49% of total embodied carbon emissions are 
from the steel structure alone and over 66% when including structural concrete elements [11]. These 
structural material quantities do not scale linearly with size and are dependent on myriad factors 
including construction method, loads and building size.  

We identify a gap between fuzzy benchmark numbers and high-resolution BIM models for embodied 
carbon estimation and thus introduce in this paper a hybrid approach to measure embodied carbon, 
specifically of steel-framed buildings, using generative structural design and sizing optimization. As 
outlined in Figure 2, our algorithm takes building massing and automatically dimensioned structural 
elements for the embodied carbon calculation, while relying on proven methods for the building 
envelope, creating a proxy parametric building model that serves as a simplified BIM model. A 
comparative study with real-world building data shows how our workflow can estimate structural 
material quantities comparable to real-world building data. The fully automated nature of the model 
further allows for its implementation with existing carbon estimation tools in urban modelling software 
and its use with surrogate modelling and machine learning algorithms in the future. 

  

Figure 2: Proposed workflow for embodied carbon calculation: Building massing (a.), geometric abstraction (b.), 
area calculation of linearly scalable building elements (c.), integrative generative design geometry generation 

analysis and sizing of structural members (d.) and final embodied carbon calculation (e.). 

2. Background 
While methods for estimation of operational energy on both building and urban scales are relatively 
well established [8], there can be a high degree of uncertainty in prediction of the embodied carbon of 
a building. We can differentiate between benchmark datasets and material quantification methods. 

Material quantification methods rely on an accurate tally of building materials used in a building that is 
then then multiplied by their specific carbon content. This is typically done via spread sheet-based tools, 
which are standalone and generic databases that serve as lookup tables for embodied carbon. As public 
or privately maintained databases, they include building materials, sometimes with associated suppliers 
and reference projects that encourage savings [11]–[14]. A database such as EC3 [11] shows that it is 
not only crucial to choose material with inherently low carbon emissions, but also a manufacturer itself 
with a low carbon supply chain. The more thoughtful choice of manufacturer for building materials can 
cut emissions significantly. 

A number of CAD-integrated tools plug directly into architectural design workflows and connect 
architectural 3D modelling software to spread-sheet based databases [15]–[18]. This allows for an 
automated tally and highly accurate estimation of the embodied carbon. However, since exact material 
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quantities must be known, such estimates are only possible at end of the design stage for a building 
when fundamental changes in structure and global design are hard and costly.  

For estimation of embodied carbon of buildings where exact material specifications are unknown, we 
must rely on benchmark datasets. The estimated benchmark value is a normalized area value of 
kgCO2/m2 as a best guess. Additional information on location, building type, size and height, and 
structural system material increases the accuracy of the prediction [19]. However, buildings typologies 
and use type alone do not give an accurate estimate for the embodied carbon per square meter and come 
with significant uncertainty [20]. Datasets with small number of projects cannot take local construction 
methods and material supply into account and are not yet available and applicable on a global scale. The 
high ranges and uncertainties stress the importance of more detailed information on a building’s 
construction material or a full BIM model of a building.  

3. Methods 
Our proposed physics-based estimation of embodied carbon creates a generative model of a building’s 
structure for material quantification – a quasi-BIM model of a building’s structural elements. In steel 
framed buildings optimal relationships between structural primary girders and secondary beams have 
been widely explored [21], resulting in rules of thumbs that have commonly used today. To further 
investigate the inherent relationship between primary and secondary structural members we analytically 
compute the relationship between spans and structural material quantity converted to embodied carbon 
in Figure 3. Derived from an analytical equation a simple beam model with prismatic members of 
rectangular (concrete, timber) or I-shaped (steel) cross sections optimally sized for typical loading shows 
the inherent relationship between geometric subdivision and spacing of members.  

 

Figure 3: Structural material quantity and embodied carbon of steel, concrete and timber system with 
differentiated primary and secondary member spacing.  Embodied carbon values are computed by multiplying 

the structural material quantities by embodied carbon coefficients: 0.50 for timber (glulam beams and CLT 
panels), 1.55 for steel (I-shaped structural sections), and 2.00 for concrete (beams with one-way flat slabs, 2% 

reinforcement ratio), selected from the 2019 ICE Database v3.0 [22]. 
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The relationship across steel, concrete and timber systems shows the different behaviour of the materials 
and the cost of primary span, most significantly affecting steel structures.  

In our more detailed analysis for real world buildings, we chose to focus on buildings constructed with 
steel framing, a construction system that is widely used for standard commercial developments of large-
scale office and residential buildings. In this research we specifically investigate estimating structural 
material quantities of the main structural floor framing of such buildings, which is a major component 
of total structural material and varies widely based on geometry and material decisions. We create a 
geometric layout of the steel framing system, which we dimension using an assumed load derived from 
building codes. Without knowing the actual geometry of a building’s structure, through optimizing the 
generative geometry model towards low weight while incorporating constraints of clear span and loads, 
we create a fully dimensioned structural system for any building massing.  

To test and calibrate the generative models, we relied on a data set of four steel frame buildings, as 
adapted from Tan [23]. A single floor of the steel framing plans with dimensioned cross sections and 
loading serve as the benchmark for our simulation. As our testing framework, we used the 3D modelling 
package Rhinoceros 3D with its parametric node based visual scripting environment Grasshopper [24]. 
Custom scripts were combined with optimization framework DSE [25] and the structural solver 
Karamba3D [26].  

The four buildings feature different architectural typologies as shown in Figure 3; Building #1 is an 
office tower, building #2 a school, building #3 a warehouse, and building #4 a university. Through this 
typological diversity, the clear spans range from 2 to 16.5 meters. Cores and walls were abstracted as 
supports while steel columns were included in the model.  

 

Figure 4: Steel framing plans of initial case study dataset Building# 1-4 

Based on our benchmark data sets, a façade load of 500 plf (0.68 kN/m) was applied to the perimeter 
beams as well as a dead load for the concrete deck of 45psf (2.2 kN/m2) and an additional superimposed 
dead load for finishes and equipment of 20 psf (1kN/m2). Live loads vary based on programmatic 
requirements referenced from ASCE 7-10 Table 4-1 [27] and sum up to to a total of 125 psf (6 kN/m2) 
for building #1, 115 psf (5.5 kN/m2) for building #2, 315 psf or (15.1 kN/m2) for building #3 and 145 
psf or (6.9 kN/m2) for building #4.  

Our reference steel framing data set relies on a series of detailed structural design assumptions, such as 
cambering of the steel beams and concrete slab on steel deck that works compositely with the beams; 
both of these inclusions increase the steel beams’ structural capacity. We simplified these features, as 
they are not implemented in the structural solver. We therefore adjusted our benchmark model to differ 
slightly from the real-world dataset by using the real-world geometry with optimized cross sections as 
the comparison benchmark for the generative system. A maximum displacement of maximum beam 
length divided by 120 (instead of 240) was chosen to account for these differences. Resulting in a 
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maximum displacement of 6.2 cm (#1 with 14.7m max. span), 5.4 cm (#3 with 12.8m max. span), 6.9 
cm (#4 with 16.5m max span) and 3.2 cm (#2 with 7.6m max. span).  

For the geometric generation of a beam layout, we propose two generative methods; the Voronoi method 
and the Cut Out method. As visualized in Figure 5 both methods produce quasi optimal solution averages 
that predict the weight of the structure. The Voronoi method subdivides the floor into equal areas, and 
the number of divisions, which defines the bay size, and the beam spacing can be input parametrically. 
The Cut out method creates a rectangular grid with variable bay sizes in x and y direction and adjustable 
column cadence that is cut out from the boundary curve of the original floor plate. After generating the 
geometry, the structural members are split up into a hierarchy of girders and beams which is reflected 
in their structural simulation. After generating the geometry, we apply the loading of the original 
building, including area and façade load, to the structure and automatically size cross sections based on 
Eurocode. The final volume of the beam geometry is measured and returned as total mass per m2.  Each 
of these methods can be optimized or sampled over the input parameters, which generate a range of 
results. 

 

Figure 5: Voronoi (1) and Cut Out (2) method take a floor slab of an existing massing as an input (a.). Both 
methods adaptively subdivide the floor area (b1., b2.) to create a variety of layouts with differentiated 
bay sizes and beam spacings (c1., c2.). An average of quasi optimal solutions leads to the predicted 

weight and sizing of the structure (d1., d2.) 

4. Results 
The following section describes the results of the Voronoi and Cut out method applied to our building 
dataset, as well as sampling larger design spaces with parametric variation of the input variables.  

When applied to our reference buildings (#1-4) the results of both the Voronoi and the  
Cut out method are described in Figure 6. To study the structures more consistently, the former US cross 
sections were adapted their closest fitting European counterpart and converted to HEA/HEB/HEM 
/HEAA as our structural solver works with European sizing code. This differs from the original weights 
due to differences in sizing from US to Eurocode. The conversion is described as observed building (a.) 
with total mass ranging from 40 to 76 kg/m2. To benchmark and compare the geometric creation 
methods and the sizing algorithm we additionally calculate the optimal sizing based on the original 
geometry (b.).  
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Figure 6: Buildings #1-4 with the observed building (a.), an optimal sizing of members based on real geometry 
(b.), optimal sizing of members based on Voronoi method (c.) and Cut out method (d.).  

The optimal sizing should return results as close to the original as possible to best reflect the built 
structure, resulting in error ranges from 1.6% to 12.7%, reflecting the simplification of cambering and 
composite action from the original dimensions.  

For the Voronoi method (c.) the average girder span of the original building and a bay size of 3m was 
chosen as input parameters. This resulted in bay sizes of 10.68m (#1), 5.7m (#2), 10.16m (#3) and 8.2m 
(#4). Using the girder average length as the input variable proved to be appropriate for the more regular 
structures #1-3 while the large variety of spans of the lecture hall of the university building #4 with 
16.5m building #4 caused a slight distortion. Error ranges fall under 10% in buildings #1-3 and 12.7% 
in building #4. 
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The Cut out method (d.) was used with input parameters most closely representing the original building. 
For buildings #1,2 and #4 the grid size was set at 8x2.5m with columns every corner in X direction and 
every 5th beam in Y direction. For #3 longer spans of 12x2.5m and columns, every corner in X and every 
2nd in Y direction were chosen. The warehouse building, with it is high load, stressed the maximum 
standardized cross section and artificially larger cross sections had to be provided for the sizing 
algorithm to find a solution.  

To further study the parameter space of the two methods, a series of 1000 samples was calculated with 
random input samples, applying both Voronoi and Cut out method to each building geometry, as shown 
in Figure 7. The models were calculated with varying seed values for subdivision point placement, bay 
sizing (3-15m), beam spacing (3m) in the Voronoi method and varying x and y grid length (2-20m) and 
fixed column cadence (2) in the Cut out method. The scatter plots display the Pareto front and the median 
axis of the real buildings and the original structural quantity in kg per m2 of the reference structure.  

The structural material quantities fall in a 10% range of generated values from our real building values 
when the bay size of the original building is known. Averaged over +- 0.5m bay size, the results stay 
within a 25% margin of the average samples generated with the Voronoi method (#1, 1.1%, #2 17%, #3 
3.6%, #4 24.5%) and within a 17% margin with the Cut out method (#1 5.8%, #2 15.6%, #3 16.5%, #4 
9.2%). 

4. Discussion and conclusions 
Structural systems are one of the most carbon intensive parts of a building and therefore a crucial 
component in assessing a building’s embodied carbon. Given the difficulties posed by the reduction of 
carbon emissions to the building industry’s efforts to combat climate change, better modes of analysis 
and prediction can help us to gain a better understanding of existing housing stock. Furthermore, the 
relationships between broad structural material quantity loading, architectural programs and geometry 
can inform future construction systems and design decisions. Our method presents a first step towards 
analysing a housing stock based on external geometry and can take advantage of large geometric GIS 
datasets with building massings available for cities and buildings worldwide.  

Currently, a building’s embodied carbon can be assessed either via a benchmark database or a full 
material survey. Current databases are sparse and limited in their architectural program, location, 
typology, and construction system and therefore come with significant uncertainty. There are no big 
public repositories, and the existing databases are small. As De Wolf writes; “Industry lacks the 
appropriate benchmarks to know how much materials are needed for various structures.” [19]. 
Proprietary and with a wide range of low carbon to commercial buildings, making them difficult for 
benchmarking. A full life cycle analysis (LCA) is always done after the fact; a full material survey 
requires a full 3D BIM model that is only available at the end of the design process, after the most 
important design decisions are difficult to adjust or require a laborious accounting of an existing 
structure by specialists.  

One of the main sources of uncertainty is a building’s structure. Compared to material quantities of 
building envelopes, it is hard to estimate based on a building massing. We propose a physics-based 
method for estimating embodied structural material quantities of steel frame structures. A generative 
geometry workflow creates a mock-up structure from a given building outline that is fully dimensioned 
using realistic loading conditions and cross sections. This creates a simplified structural model of a steel 
framing system we can further use to analyse a building’s embodied carbon.  

Generative design algorithms that are typically used for the creation of novel buildings are proposed to 
reverse engineer structural components of existing structures. Our unique approach offers two methods 
for generating geometry and structural material quantities. Due to the limited dataset, it is unclear if one 
method can perform significantly better. Our results show that all structures are highly sensitive and rely 
on a correct input of loading and span.  



Proceedings of the IASS Annual Symposium 2020/21 and the 7th International Conference on Spatial Structures 
Inspiring the Next Generation  

 

 
 

9 

 

Figure 7: Comparison of 1000 samples of Voronoi and Cut out method on the #1-4 Building Dataset.  
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The regular office building (#1) and school building (#2) with short spans show prediction errors of 
under 10%. Special cases can pose a challenge for the algorithmic prediction, such as the warehouse 
building (#3) with large spans that go to loading limits for conventional steel cross sections. 
Furthermore, the university building (#4) with a large lecture hall shows how long spans can have a high 
impact and distort averages.  

The method is currently limited by its inputs – bay size, materiality, and loads – that needs to be assessed 
beforehand. GIS information such as zoning, the year the structure was built, and requirements of 
loading per building code can help define these inputs on a broader scale. 

The results of both our cross-material analysis and the building dataset show how we do not need precise 
geometry for minimal embodied carbon, as scale and spans are the decisive factors. While a number of 
geometric configurations are not efficient, there is still a lot of architectural freedom for the design of 
low-embodied carbon structures. The flat design space suggests that various complex load paths can 
create an efficient structure. Our findings are supported by statistical analysis of the deQo Database 
that suggested a correlation between span and embodied carbon is crucial in determining a building’s 
embodied carbon and is far more important than floor area or building exterior massing [19]. This trade-
off between large spans and structural material quantities is clearly visible and suggests that “open floor 
plans” with inherently more material should be carefully evaluated for their architectural trade-offs. 
Competing motivations of future spatial flexibility and low embodied carbon must be further assessed 
and studied more in depth.  

The results and analysis of the structural framing plans show a large variety of structural material 
quantity over the four sample buildings, almost doubling the embodied structural material quantities, 
and thus embodied carbon, based on different spans and loads. The analysis of our parameter space 
shows that a correct estimation of the bay size of the real structure allows for an estimation of the 
buildings structural material quantity using our two methods. 

In this paper we present a first proof of concept for a novel generative design workflow for embodied 
carbon analysis. Future work utilizing larger calibrated building datasets will be required to make 
embodied carbon predictions with high accuracy. Further assessing the performance and refining our 
geometric methods. An integration with secondary geometric details for building envelopes floors and 
cores will allow for a comprehensive study of embodied carbon. Additional material systems widely 
used in construction such as concrete, brick and timber systems would have to be investigated to make 
predictions about larger urban building stock. For example, the inclusion of lateral systems in the 
simulation would enable predictions of tall buildings. As scaling effects have a great effect on 
skyscrapers exposed to wind loads, which is reflected in non-linear increase of their structural mass with 
greater height [28]. 

A more precise estimation of a building’s internal geometry could further enable more comprehensive 
operational energy simulations, incorporating previously unknown variables such as thermal mass or 
internal layout. Engineers and architects make key LCA design decisions during schematic design 
development. The implementation of fast analytical and predictive tools in design environments could 
enable more informed early-stage design decisions. Accurate prediction of embodied carbon is crucial 
for decisions regarding existing housing stock. From the small scale – informing stakeholders towards 
retrofit decisions and better estimate impact of new real estate developments – and on a larger scale – 
guiding city scale building code and policy implementations for embodied carbon building standards 
and large-scale masterplans.   
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